
Solving the
Edge Puzzle

A breakdown of
the expected and
unexpected building
blocks required to build
optimized distributed
systems

Introduction: The Edge Puzzle

The Complexities of Replicating the Cloud Developer Experience at the Edge

The Context: Moving from the Cloud to the Edge

The Challenge: The Many Complexities of the Edge Developer Experience

Code and Configuration Management

Developer Workloads Moving to the Edge	

How Complexity Factors into Edge Runtimes

Observability for Distributed Systems: Diagnostics and Telemetry

Managing the Application Lifecycle

Leveraging GitOps and CI/CD Workflows

The Solution: Consistency is Key

How to Approach Application Selection, Deployment, and Management for the Edge

The Context: Complexities Enhanced by Placing More Parts of the Application at the Edge

The Challenge: The Complexities in Moving Diverse Workloads to the Edge

Web Application Firewalls (WAFs) & Bot Management Tooling

Image Optimization

Modern Testing & Experience Optimization

Load Balancing Solutions

Containers: Challenges of Orchestration

Serverless Computing for Edge Computing

The Solution: Partner with an Edge as a Service Provider

The Complexities of Building and Operating Edge Networks and Infrastructure

The Context: Edge Networks and Infrastructure are Changing

The Challenge: Managing the Network, Infrastructure, and Operations in a Distributed Compute Environment

DNS

 TLS: Provisioning, Management, and Deployment Across Distributed Systems

 DDoS: Protecting Layers 3, 4, and 7

 BGP/IP Address Management

 Edge Location Selection and Availability

 Edge Workload Orchestration

 Load Shedding and Fault Tolerance

 Compute Provisioning and Scaling

 The Messaging Framework

 Observability for Distributed Systems	

 NOC Integration

The Solution: The Right Expertise

Conclusion: Overcoming the Complexities

Table of Contents
3

4

4

5

5

5

5

6

7

7

9

10

10

11

11

11

11

12

12

12

13

14

14

14

14

16

16

17

17

17

18

18

18

18

18

19

20

5

Introduction:
The Edge Puzzle
While most developers have grown familiar with cloud deployment,
running workloads across a distributed edge introduces an entirely
new set of complexities and considerations. Moving from managing a
single deployment endpoint to hundreds or more, requires a different
knowledge base and skillset, particularly if different microservices also
need to be served from different edge locations.

Nonetheless, developers are increasingly being asked to program
in a new computing paradigm - both for edge computing in its
own right and as part of a hybrid cloud infrastructure. Further, the
parts of the application being moved closer to the end user are
also changing. Initially, simple, static assets like images were the
main items, but in recent years, application owners have started to
migrate more advanced logic, security, and persistent data stores
out to the edge. However, the adoption curve has been slow, mainly
due to the extreme complexities involved in designing, building, and
operating a distributed deployment model.

For the edge to achieve the $800B mark by 2025 (as predicted in
The Linux Foundation’s State of the Edge Report 2021), developers
must master the edge puzzle to learn to build optimized distributed
systems, or partner with an Edge as a Service (EaaS) platform
provider.

What are the main complexities involved in running workloads at the
edge? Let’s break down the complex and always shifting puzzle into
component pieces. What do developers and Dev Ops teams need
to know to reap the rewards of edge computing?

3

The Complexities of Replicating the
Cloud Developer Experience at the Edge

The Context:
Moving from the Cloud to the Edge

Whether using AWS, Azure, GCP, Digital Ocean, or a more niche
provider, the dev experience is fairly similar, no matter which cloud
you’re on. For a developer, cloud workloads typically include:

•	 Identifying where your highest concentration of users are
and selecting a single cloud location that will deliver the best
performance to the maximum number of users.

•	 Connecting your code base, hosted in code repository tooling
(e.g. Github, GitLab, Bitbucket)

•	 Automating build and deployment through CI/CD tooling (e.g.
Jenkins, CircleCI, Travis CI).

These processes are fairly straightforward when all code and
microservices are feeding into a single deployment endpoint.
However, what happens when you add hundreds of edge endpoints
to the mix, with different microservices being served from different
edge locations at different times? In this kind of environment, how
do you decide which edge endpoints your code should be running
on at any given time? More importantly, how do you manage the
constant orchestration across these nodes among a heterogeneous
makeup of infrastructure from a host of different providers?

Over the last fifteen years or so, developers have become very familiar
with cloud deployment. There are many reasons for its popularity
which can mainly be summed up by saying that cloud simplifies the
management of delivery of services to end users, with functions that
span compute, storage and delivery.

4

The Challenge:
The Many Complexities of the Edge Developer Experience

Code and Configuration Management

Every application is unique. Developers need granular, code-level
control over edge configuration to fit the requirements of their
applications. At the same time, they require simple, streamlined
workflows to continue to push the pace of innovation and maintain
secure, dependable application delivery.

With various industry players competing for a share of the edge
computing market, from hyperscalers to CDNs, there are many
considerations for evolving the developer experience to adapt to
edge nuances. Many traditional CDNs, for example, have hard-
coded proprietary software into their solutions (e.g. web application
firewall technology), offering very limited configuration options. Thus,
developers can find themselves backed into a corner with legacy
CDNs offering edge services, forcing them to bolt on additional
solutions that inevitably erase some of the benefits they were
seeking to solve with the CDN solution in the first place.

Additionally, developers are increasingly looking to migrate more
application logic to the edge for performance, security, and cost-
efficiency gains.

Developer Workloads Moving to the Edge

The types of workloads being considered for edge deployment are
many and diverse. Examples of developer workloads moving to the
edge include:

•	 Micro APIs - Hosting small, targeted APIs at the edge for use
cases such as search or fully-featured content exploration with
GraphQL (which enables faster responses on user queries
while lowering costs).

•	 Headless Commerce - Decoupling the presentation layer
from back-end eCommerce functions allows you to push
more services to the edge to create custom user experiences,
achieve performance gains, and improve operational
efficiencies.

Some of the complexities surrounding the edge developer experience include:

•	 Full application hosting at the edge - More and more
developers are exploring the idea of hosting their entire
application at the edge. Rather than beaconing back to a
centralized origin, hosting databases alongside apps at the
edge and then syncing across distributed endpoints is quickly
becoming a reality that has the potential to become the new
normal as edge computing matures.

In order for developers to progress towards migrating more
advanced workloads to the edge, they require flexible solutions that
support distribution of code across programming languages and
frameworks.

How Complexity Factors into Edge Runtimes

As more developers adopt edge computing for modern
applications, edge platforms and infrastructure will need to support
different runtime environments. Runtime describes the final phase
of the program lifecycle, involving the machine executing the
program’s code.

Complexity factors into runtimes at the edge in particular in
relation to interoperability, i.e. the complexity of managing runtimes
across distributed systems. Developers need to be able to run
applications in their dedicated runtime environment with their choice
of programming language. Systems that support diverse developer
needs must be able to support this to be useful to all.

One of the most widely used runtime environments for JavaScript
is Node.js, used by many businesses, large and small, to create
applications that execute JavaScript code outside a web browser.
Other well-known examples of runtime environments include
the Java Runtime Environment, a prerequisite for running Java
programs, .NET Framework which is required for Windows
.NET applications, and Cygwin, a runtime environment for Linux
applications that allows them to run on Windows, macOS, and
other operating systems.

Some of the complexities surrounding the edge developer experience include:

Code and configuration
management

Edge runtimes Distributed diagnostics
and telemetry

Application lifecycle
management

5

With developers building across many different runtime environments, Edge as a
Service offerings need to be able to support code portability. Developers can’t be
expected to refactor their code base to fit into a rigid, pre-defined framework. Instead,
multi-cloud and edge platforms and services must be flexible enough to adapt to
different architectures, frameworks and programming languages.

The Challenge:
The Many Complexities of the Edge Developer Experience

““And since we’re in a DevOps
world, not only do we need to think
about the application development
lifecycle and the CI/CD workflow,
but we need to think about the
observability and management of
the application at the edge.”

Stewart McGrath

Co-founder and CEO,

Section

Observability for Distributed Systems: Diagnostics and Telemetry

It is critical for developers to have a holistic understanding of the state of their application at any given time. Observability becomes
increasingly complex when you consider distributed delivery nodes across a diverse set of infrastructure from different providers.

As reported in a recent Dynatrace survey of 700 CIOs, “The dynamic nature of today’s hybrid, multicloud ecosystems amplifies
complexity. 61% of CIOs say their IT environment changes every minute or less, while 32% say their environment changes at least once
every second.” To add to the complexities of trying to keep up with dynamic systems, that same report revealed that: “On average,
organizations are using 10 monitoring solutions across their technology stacks. However, digital teams only have full observability into
11% of their application and infrastructure environments.”

An effective solution for multi-cloud/edge observability should be able to provide a single pane of glass to draw together data from
many locations and infrastructure providers. This kind of visibility is essential for developers to gain insight into the entire application
development and delivery lifecycle. The right centralized telemetry solution will allow engineers and operations teams to evaluate
performance, diagnose problems, observe traffic patterns, and share value and insights with key stakeholders.

6

The Challenge:
The Many Complexities of the Edge Developer Experience

Managing the Application Lifecycle

Along with configuration flexibility, control, and comprehensive
observability tooling, developers need to be able to easily manage
their application lifecycle systems and processes. With a single
developer or small team overseeing a small, centrally managed
code base, this is fairly straightforward. However, when an
application is broken up into hundreds of microservices that
are managed across teams, coupled with a diverse makeup of
deployment models within the application architecture, this can
become exponentially more complex and impact the speed of
development cycles.

When we add the additional complexities of pushing code to a
distributed edge and maintaining code application cohesion across
that distributed application delivery plane at all times (even during an
application deployment cycle), application lifecycle management for
the edge becomes more complex than the centralized approaches
used to date with cloud. This is where management solutions such
as leveraging GitOps and CI/CD workflows come into play, so that
the benefits of edge can be leveraged without increased team
overhead.

Leveraging GitOps and CI/CD Workflows

To streamline operations, many teams take advantage of
GitOps workflows. GitOps is a way of implementing Continuous
Deployment for cloud native applications. It focuses on a developer-
centric experience when operating infrastructure, by using tools
developers are already familiar with, including Git and Continuous
Deployment tools.

While responsibilities and oversight of different parts of an
application’s code may be siloed within an organization, all of the
code needs to feed into a unified code base. In order for developers
to be able to move more services to the edge, they need tooling
that is underpinned by GitOps principles for a fully integrated edge-
cloud application lifecycle.

As an integral part of GitOps workflows, developers need flexibility
and control when it comes to integrating edge deployment
processes into existing continuous integration/continuous delivery
(CI/CD) pipelines.

7

The Challenge:
The Many Complexities of the Edge Developer Experience

There are three main principles worth following when managing changes to your edge configuration through a CI/CD pipeline:

•	 Optimize for fast feedback. Identify steps within the pipeline that need optimizing by tracking execution time on individual
stages. From the time you push a change to version control to making the change live should take no longer than five minutes.
Fast feedback is important for quickly ensuring your changes meet business needs and cutting out technical debt and unnecessary
costs.

•	 Chunk your changes, test immediately. Instead of changing multiple things in batches and then testing for the effect, interleave
the changes and tests, and stop execution immediately if the tests fail. By turning changes into small, verifiable units, you lessen the
risk factor.

•	 Push all changes through the CI/CD pipeline. You lose the benefits you’re striving for if you accommodate changes outside the
process.

Delivery and maintenance of code to distributed edge infrastructure can be more difficult to execute with the speed and consistency
required to achieve the same application experience for end users at all times as if they were all connecting to one centralized application
in the cloud. But using the right tools can make all the difference.

8

The key to accelerating edge computing adoption is making the experience of
programming at the edge as familiar as possible to developers, explicitly drawing on
concepts from cloud deployment to do so. The added complexities that a distributed
edge deployment brings introduces new challenges to achieving consistency across
these experiences.

The Solution:
Consistency is Key

““When we look at the challenges of scale
and operational consistency, the edge
cannot be seen as a point solution that
then needs to be managed separately
or differently across hundreds of sites
– this would be incredibly complex.
In order to be successful, you need to
manage your edge sites in the same way
you would the rest of your places in the
network – from the core to the edge.
This helps minimize complexity and
deliver on the operational excellence
that organizations are striving for.”

Rosa Guntrip

Senior Principal Marketing Manager

Cloud Platforms, Red Hat

The right Edge as a Service platform will help minimize
complexity, enabling developers to focus on innovation and
executing mission-critical tasks instead of juggling all the
pieces involved in managing edge/multi-cloud workloads.

Furthermore, growth in adoption of container technology
and serverless functions has completely changed the
game, leaving many legacy CDNs unequipped to support
modern applications. With Kubernetes becoming the
preferred container orchestration platform, edge solutions
built on Kubernetes are significantly better positioned to
support the needs of modern developers.

9

How to Approach Application Selection,
Deployment, and Management for the
Edge

The Context:
Complexities Enhanced by Placing More Parts
of the Application at the Edge

With the demand for faster user experiences being driven by emerging and
evolving use cases, application creators are increasingly looking to offload more
services to the edge. At the same time, application operations teams are looking to
simplify their delivery stacks. Bringing more of the application delivery cycle into a
single cohesive edge delivery solution can achieve both of these goals concurrently.

While cloud providers have the flexibility to support a diverse range of workloads,
developers working in the cloud are limited to a single provider’s network, or are
responsible for managing workload orchestration across multiple providers. CDNs,
meanwhile, may have expansive global networks of infrastructure, but they are
typically unable to support general purpose workloads beyond basic content
delivery.

Content Delivery Networks (CDNs) are often thought of as the first evolution of
edge computing. However, content delivery encompasses only a small subset of all
edge workloads. As the diversity of edge workloads has expanded beyond content
delivery, existing solutions fall short in terms of what they’re able to support.

Many CDNs were built around open source technologies, such as Varnish Cache
and ModSecurity. Typically, they have customized the code base so much over the
years that developers using them are locked into “black box”, proprietary solutions
that don’t offer the flexibility and control necessary to fit the unique requirements of
each application.

Furthermore, growth in adoption of container technology and serverless functions
has completely changed the game, leaving many legacy CDNs unequipped to
support modern applications. With Kubernetes becoming the preferred container
orchestration platform, edge solutions built on Kubernetes are significantly better
positioned to support the needs of modern developers.

Emerging and Evolving
Edge Use Cases:

•	 The Internet of Things (IoT)

•	 The Industrial Internet of
Things (IIoT)

•	 Hospitals and health
infrastructure

•	 Remote learning

•	 eCommerce and Retail

•	 Video conferencing

•	 Storage gateways

During the cloud computing era, many application creators turned to complementary
CDN technology to boost performance, security, and scalability. Today, they are
turning to the edge for the next logical iteration. Placing parts of an application at the
edge has obvious performance benefits but it also adds complexity to the simplicity of
the cloud by adding an additional and discrete delivery layer.

10

The Challenge:
The Complexities in Moving Diverse Workloads
to the Edge

Web Application Firewalls (WAFs) & Bot
Management Tooling

DevOps teams are increasingly choosing to deploy WAFs and bot
mitigation tools across a distributed architecture, with the goal of
detecting and mitigating threats faster. Managing a WAF or bot
mitigation deployment across a multi-cloud/edge network is no
simple feat, however.

While many best-in-class WAF and bot management technologies
have emerged - providers such as Wallarm, Snapt (WAF), ThreatX,
Signal Sciences, Radware Bot Manager, and PerimeterX - most
legacy CDNs still don’t give developers the option of deploying
third-party solutions. Fastly, for example, recently acquired Signal
Sciences, recognizing the need for more advanced WAF technology
beyond their own proprietary solution.

We often speak with developers who are frustrated with the “black
box”, built-in solutions of legacy CDNs, and demand more choice
and flexibility.

Image Optimization

Beyond the simple caching of images, developers, especially
in the e-Commerce sector, are increasingly seeking out image
optimization solutions, such as Optidash, that optimize and
transform images on-the-fly.

Image optimization benefits include:

•	 Faster page load times for end users

•	 Improvements to operational efficiency

•	 Removing the load on centralized infrastructure

Just as with security solutions, most legacy CDNs don’t support
third-party software that specializes in point solutions. What’s more,
if you’re operating a multi-cloud/edge environment, you will have to
install and manage these types of image optimization tooling across
the entire network.

Modern Testing & Experience Optimization

Marketers, product managers, developers and others need the
ability to effectively test and optimize applications across the client-
side, server-side, single page application (SPA), mobile, redirects,
and so on. Conventional A/B testing solutions use JavaScript
tags to manipulate content on applications, which reduces site
performance with flicker and increased latency.

Modern tools like SiteSpect, however, rethink this model by sitting
in the flow of HTTP traffic. This allows them to support multiple user
experience optimization techniques, including client-side, server-
side, redirects, and SPA optimization.

Legacy CDNs can’t support this new architectural model and
therefore require extra hops in the HTTP delivery chain, ironically
negating many of the performance benefits they are aiming to solve.

Now, let’s take a deeper dive into some of the complexities involved in moving more diverse workloads to the edge, including
selection, deployment and ongoing management.

11

The Challenge:
The Complexities in Moving Diverse Workloads
to the Edge

Load Balancing Solutions

While most hyperscalers and edge providers offer load balancing,
these solutions are often restricted to their own environments.
Therefore, if you migrate your application to a different cloud or data
center, the hyperscaler or edge provider’s proprietary load balancer
won’t be able to follow.

In the instance of a traditional load balancer that is being deployed
to the cloud, you need to use a virtual appliance. If you then decide
to use a load balancer in a second cloud, that virtual appliance will
need to be re-configured again… and so on for every cloud or data
center it operates in. There is no communication between these
two appliances. In this instance, you are operating two (or more)
separate clouds that your teams will need to manage separately.

Organizations that use multi-cloud/edge networks are then faced
with having to separately configure, monitor and manage delivery
and security for each distinct environment. Similarly, for any
application that changes hosting location, adjustments must be
made on an individual basis. This not only increases complexity, but
takes up valuable resources and limits much of the flexibility that is
supposedly a key benefit of a multi-cloud/edge model.

Containers: Challenges of Orchestration

In a small environment with only a handful of systems, managing
and automating orchestration is fairly straightforward, but when an
enterprise has thousands of individual systems that interact with
each other on some level, orchestration automation is both powerful
and essential.

Containers are lightweight by definition with a low footprint, making
them perfect candidates for running on edge devices. The main
reason machine learning models leverage containers is because
legacy devices can still interact with cloud services like AI/ML to
achieve fast computation in-place.

Containers can be deployed to the device of your choosing and
can be built using the architecture of your choice so long as it can
run the container runtime. Updating containers in-place is simple,
particularly when orchestration solutions like Kubernetes are used.

Consider SaaS providers who traditionally offered on-premise or
single point of presence installations. As customers increasingly
demand distributed deployment models, SaaS providers are faced
with the build vs. buy dilemma.

The management of these complex clusters of devices, services,
and networks can get highly complicated very quickly.

Serverless Computing for Edge Computing

Serverless computing, also called function as a service (FaaS),
enables the execution of event-driven logic without the burden
of managing the underlying infrastructure. The name ‘serverless’
is characterized by the freedom that it gives developers to focus
on building their applications without having to think about
provisioning, managing, and scaling servers.

The concept of serverless was originally designed for cloud
environments, eliminating the ‘always-on’ model to save on
resource consumption, among other benefits. In recent years,
advances in edge computing technology have led more developers
to migrate serverless workloads to the edge. The benefits of
serverless at the edge, when compared to alternatives like
containers and VMs, include lighter resource consumption,
improved cost efficiencies, code portability, and speed of
deployment.

However, not all workloads are suitable for serverless models and
it’s important to understand the requirements of a given workload
when determining the most appropriate deployment model.
Considerations such as code dependencies, cold starts and their
effect on performance, security, and resource requirements are
critical when designing edge architectures.

12

An Edge as a Service (EaaS) provider can help overcome many of the complexities
involved in application deployment and management at the edge.

The Solution:
Partner with an Edge as a Service Provider

The right EaaS provider, for instance, won’t lock developers into specific software
choices for security or image optimization tooling, allowing for “best of breed”
selection. EaaS can also support distributed deployment of more advanced
workloads, making it easier to integrate testing and experience optimization solutions
like SiteSpect into your edge stack.

One of the most important areas that Edge as a Service can make more straightforward is load balancing across multi-cloud/edge
networks. EaaS providers may offer automated load balancer options, which automatically migrates traffic and workloads so that
developers don’t have to do this on an individual basis.

Similarly, Edge as a Service providers can help streamline containerization and serverless deployments by (i) containerizing applications
and accelerating the developer path to the edge and (ii) offering flexible language support that allows developers to simply ship code and
offload the responsibilities of deployment, management, and scaling of the underlying infrastructure to the edge compute platform.

13

The Complexities of Building and Oper-
ating Edge Networks and Infrastructure

The Context:
Edge Networks and Infrastructure are Changing

Let’s dive into a high-level overview of some of the critical
components you need to consider when building and operating
distributed networks.

Areas that we’ll cover include:

•	 DNS

•	 TLS

•	 DDoS mitigation (Layers 3, 4, 7)

•	 BGP/IP address management

•	 Edge location selection and availability

•	 Workload orchestration

•	 Load shedding and fault tolerance

•	 Compute provisioning and scaling

•	 Messaging framework

•	 Edge operations model and team

•	 Observability

•	 NOC Integration

As you’re evaluating all of these considerations, bear in mind
that working with Edge as a Service can solve many of these
complexities for you.

DNS: A Critical Component in Networking
Infrastructure

The domain name system (DNS) is often referred to as the
phonebook of the Internet since it translates domain names to
IP addresses, allowing browsers to load Internet resources. DNS
provides the hierarchical naming model, which lets clients “resolve”
or “lookup” resource records linked to names. DNS therefore
represents one of the most critical components of networking
infrastructure.

DNS Services are Often Vulnerable to Threats

Other widely used Internet protocols have started to incorporate
end-to-end encryption and authentication. However, many widely
deployed DNS services remain unauthenticated and unencrypted,
leaving DNS requests and responses vulnerable to threats from on-
path network attackers. Hence, when building out DNS services, it’s
critical to maintain a security-first approach.

We are in the midst of a foundational technological shift in communications infrastructure. IDC predicts that by 2023, more than 50% of new
enterprise IT infrastructure will be deployed at the edge and the edge access market is predicted to drive $50 billion in revenues by 2027.
To interconnect this hyper-distributed environment, which spans on-premise data centers, multi-clouds, and the edge, the network is in the
process of evolving and becoming more agile, elastic, and cognitive.

The Challenge:
Managing the Network, Infrastructure, and Operations in a
Distributed Compute Environment

14

The Challenge:
Managing the Network, Infrastructure, and Operations in a
Distributed Compute Environment

““Enterprise infrastructure is evolving faster than ever
before. Emerging technologies make it possible to
spin up microservices and cloud instances in minutes.
DevOps teams are churning out code 40 times faster
than legacy production environments. New edge and
serverless architectures are taking computing out of
the data center and closer to devices enabling global
real-time applications. Those organizations not born
in the cloud-native era face the additional challenge of
connecting legacy applications with new technology
in the never-ending race to meet user demands for
performance while driving efficiency and security.”

Kris Beevers

CEO,

NS1

DNS in a Distributed Computing Environment

DNS is lightweight, robust and distributed by design. However, new approaches to computing architecture, including multi-cloud and
edge, introduce new considerations when implementing application traffic routing at the DNS level.

In a distributed compute environment, DNS routing entails ensuring that users are routed to the correct location based on a set of given
objectives (e.g. performance, security/compliance, etc.). When routing, you need to take into account service discovery. The majority
of the time, people use DNS for public-facing service discovery, but this can be challenging to pull off. Routing is complicated both
in terms of ensuring that users are routed to the right location and that failover is handled - in other words, what will you do to help
update routes when systems fail?

15

The Challenge:
Managing the Network, Infrastructure, and Operations in a
Distributed Compute Environment

TLS: Provisioning, Management, and Deployment Across Distributed Systems

Transport Layer Security (TLS) is an encryption protocol that protects communications on the Internet. You can feel reassured that your
browser is connected via TLS if your URL starts with HTTPS and there is an indicator with a padlock assuring you that the connection is
secure. TLS is also used in other applications, such as email and usenet. It’s important to regularly upgrade to the latest protocol for TLS
and its predecessor, the SSL protocol.

When working with TLS and/or SSL in distributed environments, you have to either work with your own certificates using a managed
service such as DigiCert or use an open source version with a service like Let’s Encrypt or Certbot. The managed certificate authorities such
as DigiCert will provide automated tooling to provision certificates. With the open source versions, you will find that you have to build the
services to manage auto-renewal components and the provisioning of new certificates.

An added complexity is the question of how you deploy these protocols? In relation to distributed systems, you will have certificates that
need to be running in multiple places. They might be running across multiple providers, for example, you might be using one specific
ingress controller in one location and a different ingress controller in another. How do you ensure that your certificates are being deployed
where needed in order to actually handle the TLS handshakes? And as the number of domains that you manage increases, so too do the
complexities.

This ties directly back to DNS since you need to ensure that you’re routing traffic to the correct endpoints containing the workloads where
your TLS certificates are deployed. Further, you will have to take into account the state of your systems at any point in time and how you
route traffic, since you never want to be servicing users incorrectly.

Ultimately, servicing your user correctly is the end goal, meaning that when implementing TLS at the edge yourself, you have to take into
account all these different components.

DDoS: Protecting Layers 3, 4, and 7

When protecting against Distributed Denial of Service (DDoS) attacks across distributed systems, the first question to ask should be, where
are my systems most vulnerable to attack? The primary layers of focus on protecting against DDoS attacks include Layers 3, 4, and 7 in the
OSI model.

16

The Challenge:
Managing the Network, Infrastructure, and Operations in a
Distributed Compute Environment

Firms like Wallarm, Signal Sciences, ThreatX, and Snapt will
provide DDoS protection for you at the application layer (i.e. Layer
7). However, in an edge computing paradigm that’s made up of
heterogeneous networks of providers and infrastructure, there are
more questions that need asking. The most important: how do all
the different providers I’m using handle network and transport-layer
DDoS attacks (i.e. Layers 3 and 4)?

All major cloud providers typically have built-in DDoS protection, but
when you begin to expand across a multi-cloud environment, and
further out to the edge, you need to ensure that your applications
are protected across the entire network. This includes knowing
how each underlying provider handles DDoS protection, along with
implementing safeguards for any areas in your networks that may
be underprotected. This takes us back to DNS and the question of
how to handle traffic routing when one (or more) of your endpoints
becomes compromised.

BGP/IP Address Management

The Border Gateway Protocol (BGP) is responsible for examining
all the available paths that data can travel across the Internet and
picking the best possible route, which usually involves hopping
between autonomous systems. Essentially, BGP enables data
routing on the Internet with more flexibility to determine the most
efficient route for a given scenario.

BGP is also widely considered the most challenging routing protocol
to design, configure, and maintain. Underlying the complexities are
many attributes, route selection rules, configuration options, and
filtering mechanisms that vary among different providers.

In an edge computing environment, rather than announcing IP
addresses from a single location, BGP announcements must be
made out of multiple locations, and determining the most efficient
route at any given point becomes much more involved.

Another important consideration when it comes to routing is load
balancing at the transport layer (Layer 4). Building a Layer 4 load
balancer is complicated for the following reasons:

•	 It must support BGP announcements.

•	 You need to own the IP space, which can be very costly.

•	 You need to understand BGP, which may require a team of
network engineers to truly manage the system.

•	 You need to be able to announce in locations all around the
world (which are also the most peered locations).

•	 Finally, you need to take into account where you’re load
balancing traffic to. The distributed system that you’re running
applications on must be able to support packets that are being
load balanced from the load balancer in front

•	 BGP/IP address management

The complexities of routing across multi-layer edge-cloud
topologies are perhaps the most daunting when it comes to
building distributed systems.

Edge Location Selection and Availability

An effective presence at the edge is based on having a robust
location strategy. By moving workloads as close as possible to the
end user, latency is reduced. Selecting the appropriate geographies
for your specific application within a distributed compute footprint
involves careful planning.

Compliance also plays a role in the selection of edge locations.
Increasingly, regulations and compliance initiatives, such as
GDPR in Europe, are requiring companies to store data in specific
locations.

Edge Workload Orchestration

Managing workload orchestration across hundreds, or even
thousands, of edge endpoints is no simple feat. This can involve
multiple components. You need to start with where you want the
workload to be defined (e.g. full application hosting, micro APIs,
etc.) Next, ask where will it be stored? Finally, take into account how
the workload is actually deployed. How do you determine which
edge endpoints your code should be running on at any specific
time? What type of automation tooling and DevOps experience do
you need to ensure that when you make changes, your code will
run correctly?

Managing constant orchestration over a range of edge endpoints
among a diverse mix of infrastructure from a network of different
providers is highly complex.

17

The Challenge:
Managing the Network, Infrastructure, and Operations in a
Distributed Compute Environment

Load Shedding and Fault Tolerance

A load shedding system provides improved fault tolerance and
resilience in message communications. Fault tolerance allows a
system to continue to operate, potentially at a reduced level, in the
event of a failure within one or more of its components.

In regards to load shedding and fault tolerance at the edge, the
primary area of concern is ensuring that the systems handling your
workloads and servicing requests aren’t overloaded. Essentially,
how do you make sure that one location isn’t set up to infinitely
scale and how do you ensure that load is distributed appropriately?

Compute Provisioning and Scaling

Load shedding and fault tolerance brings us to auto scaling and
configuring auto scaling systems. One of Kubernetes’ biggest
strengths is its ability to perform effective autoscaling of resources.
Kubernetes doesn’t support just one autoscaler or autoscaling
approach, but three. These are:

•	 Pod replica count - This involves adding or removing
pod replicas in direct response to changes in demand for
applications using the Horizontal Pod Autoscaler (HPA).

•	 Cluster autoscaler - As opposed to scaling the number of
running pods in a cluster, the cluster autoscaler is used to
change the number of nodes in a cluster. This helps manage
the costs of running Kubernetes clusters across cloud and
edge infrastructure.

•	 Vertical pod autoscaling - the Vertical Pod Autoscaler (VPA)
works by increasing or decreasing the CPU and memory
resource requests of pod containers. The goal is to match
cluster resource allotment to actual usage.

If you’re not using a container orchestration system like Kubernetes,
compute provisioning and scaling can get challenging very quickly.

The Messaging Framework

The messaging system provides the means by which you can
distribute your configuration changes, cache ban requests, and
trace requests to all your running proxy instances in the edge
network or CDN, and report back results.

This involves two primary components:

•	 Workload orchestration

•	 Receiving updates - if your system needs to receive a message
or update, how do they get it, and is it getting there reliably?

Observability for Distributed Systems

It’s imperative to treat observability as a first-class citizen when
designing distributed systems, or any system for that matter.
Reliable and real-time information is critical for engineers and
operations teams who need to understand what is happening with
their applications at all times.

Observability is also a key element in disaster recovery planning
and implementation. Your infrastructure needs to be observable
and flexible so that you can understand what has broken and
what needs to be fixed. If a critical error occurs, you need visibility
into your system to keep the incident as brief as possible versus
experiencing a protracted disaster.

NOC Integration

Enterprises are taking steps to unify their network operations
centers (NOCs) and security operations centers (SOCs). Why? By
creating alignment between these two frequently siloed teams,
organizations can reduce costs, optimize resources and improve
the speed and efficiency of incident response and related security
functions.

You need to take into account the expertise of your team when
planning a NOC and/or SOC integration. Not everyone will have the
range of crossover experience necessary to pull off a successful
integration.

18

The Solution:
The Right Expertise

To truly manage distributed network, infrastructure and operations at the Edge, you will
likely need an edge operations model with an experienced team comprised of:

Network
engineers

Platform
engineers

DevOps engineers, with
an emphasis on site

reliability engineering
(SRE)

If you don’t have some or all of these specialists, or don’t have the expertise or resources in edge computing to manage the
network, infrastructure, and operations, you can work with an Edge as a Service provider whose solutions abstract away
many of the complexities associated with edge computing.

19

5

Conclusion:
Overcoming the Complexities
As we’ve just started to look at the puzzle, the reality of deploying and
managing workloads at the edge is far from simple. And while we’ve
covered a lot in this white paper, this is just a subset of the critical
components and complexities that come with building and operating
cloud-edge networks and infrastructure; and we really only scratched
the surface on each of the considerations included.

Every organization, team, and application has unique requirements when it comes to designing distributed systems. Because of
this, many teams start down the path of building their own bespoke systems, and typically become overwhelmed quickly with all of
the complexities that play into design decisions and implementation.

The real power of the edge arises when we provide application developers the opportunity to seamlessly run the software of their
choice at the edge and application operations teams the simplicity of a single delivery plane so they have a reduced operational
footprint (even with a larger geographic delivery footprint).

As an Edge as a Service provider, Section is often pulled into projects during the early stages of research and discovery, where
we’re able to offload the build and management of many, if not most, of the critical components, ultimately accelerating the path to
edge for organizations across a diverse range of use cases.

Section’s Edge as a Service simplifies all the steps involved in deploying your application to the edge. You also gain the round the
clock support of our dedicated team of expert engineers. We take care of the massive complexities and resources necessary to
support distributed provisioning, orchestration, scaling, monitoring and routing, allowing you to focus on innovation.

For more information about how edge can work for you or how to get started, reach out to us at
section.io/contact-us.

20

Citations / Related Research

“State of the Edge Report 2021”, The Linux Foundation, 2021

https://stateoftheedge.com/reports/state-of-the-edge-report-2021/

“The Move Towards a Multi-Cloud and Hybrid IT

Infrastructure”, Section, January 20, 2021

https://www.section.io/blog/multi-cloud-hybrid-it-infrastructure/

“The Balance Between Granular Control and Simplicity in

Edge as a Service”, Section, February 23, 2021

https://www.section.io/blog/balance-control-simplicity-edge-as-a-

service/

“Headless Commerce Drives Edge Computing Adoption”,

Section, October 28, 2019

https://www.section.io/blog/headless-commerce-drives-edge-

computing-adoption/

“Is Edge as a Service (EaaS) the Next Big Thing in Tech?”,

Section, January 27, 2021

https://www.section.io/blog/edge-as-a-service-the-next-big-thing-

in-tech/

“Observability, automation, and AI are essential to digital

business success”, Dynatrace, October 14, 2020

https://www.dynatrace.com/cio-report-automatic-and-intelligent-

observability/

“Managing Changes to Your Edge Configuration Through a

CD Pipeline”, Section, December 9, 2019

https://www.section.io/blog/edge-configuration-management-cd-

pipeline/

“Edge Computing Use Cases Driving Innovation”, Section,

January 22, 2019

https://www.section.io/blog/edge-compute-use-cases/

“CDNs Were a Prototype for Edge Compute”, Section,

September 10, 2018

https://www.section.io/blog/cdn-prototype-edge-compute/

“Kubernetes Is Paving the Path for Edge Computing

Adoption”, Section, May 12, 2020

https://www.section.io/blog/kubernetes-enabling-edge-computing-

adoption/

“Build vs. Buy - Evaluating Edge Solutions”, Section,

September 16, 2020

https://www.section.io/blog/edge-computing-build-vs-buy/

“IDC FutureScape: Worldwide IT Industry 2020 Predictions”,

IDC, October 2019

https://www.idc.com/getdoc.jsp?containerId=US45599219

“Comparing OpEx vs. CapEx Models at the Edge”, Section,

April 23, 2020

https://www.section.io/blog/opex-vs-capex-edge-computing-

model/

“Understanding Your Edge with Section’s Next-Gen

Observability Tooling”, Section, October 7, 2020

https://www.section.io/blog/traffic-monitor-edge-observability-

tooling/

21

About Section
Section’s Edge as a Service technologies power next-gen applications with faster,
simpler, and more secure digital experiences. For application engineers, the Section
platform removes the burdens associated with Edge infrastructure provisioning,
workload orchestration, scaling, monitoring, and traffic routing, so they can focus
on innovating their core product. The Section Edge is built on the backbone of a
vendor-agnostic global network of leading infrastructure providers spanning the
edge-cloud continuum and offers the most flexible Edge solutions to meet the unique
requirements of any application. Founded in 2012 in Sydney, Australia, Section moved
its headquarters to Boulder, CO in 2016 and continues to grow its team, partners, and
customers across the globe.

Visit our website
to learn more:
section.io

Ready to Jump In?

